2,6-Di-*tert*-butylphenols and phenoxyl radicals with metal—metal bonds

E. R. Milaeva, ** D. B. Shpakovsky, ** E. N. Shaposhnikova, ** E. V. Grigor'ev, **
N. T. Berberova, ** and M. P. Egorov^c

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University,
Leninskie Gory, 119899 Moscow, Russian Federation.
Fax: +7 (095) 939 5546. E-mail: milaeva@org.chem.msu.su

^bAstrakhan' State Technical University,
16 ul. Tatishcheva, 414025 Astrakhan', Russian Federation.
Fax: +7 (851) 225 6427. E-mail: berberova@astu.astranet.ru

^cN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
47 Leninsky prosp., 119992 Moscow, Russian Federation.
Fax: +7 (095) 135 5328. E-mail: mpe@cacr.ac.ru

σ-Aryl *trans*-bistriphenylphosphine complexes based on 2,6-di-*tert*-butylphenol containing Pt—SnCl₃, Pt—GeCl₃ groups were synthesized. Oxidation of these compounds gives the corresponding phenoxyl radicals, which were studied by ESR spectroscopy. The transformation of the diamagnetic complexes to the paramagnetic state is accompanied by cleavage of the Pt—Sn, Pt—Ge bonds and by elimination of SnCl₂, GeCl₂.

Key words: sterically hindered phenols, phenoxyl radicals, σ -aryl metal complexes, ESR spectroscopy.

The change in the magnetic state of metal complexes can influence appreciably their reactivity and be responsible for directed activation of compounds. Previously we showed, in relation to various organometallic and coordination compounds, that diamagnetic complexes pass into the paramagnetic state if sterically hindered 2,6-di-*tert*-butylphenols, which are oxidized to give stable phenoxyl radicals, are used as specific ligands. An activating effect of the unpaired electron in the ligand on the metal atom (and the whole metal complex) by an intramolecular mechanism was established for compounds containing metal—carbon, metal—nitrogen, and metal—oxygen bonds. 3-6

This paper is devoted to the synthesis and study of the properties of organometallic derivatives of 2,6-ditert-butylphenols and the corresponding phenoxyl radicals containing groups with the carbon—metal—metal
(C—Pt—Sn, C—Pt—Ge) bonds in the para-position.
Diamagnetic compounds were prepared by insertion into
the Pt—Cl bond⁷ on treatment of trans-(3,5-di-tertbutyl-4-hydroxyphenyl)-bis(triphenylphosphine)platinum
chloride (1)⁸ with dichlorostannylene and dichlorogermylene (taken as the GeCl₂·dioxane complex)
(CHCl₃, 20 °C); the yields of complexes 2 and 3 were 58
and 69%, respectively (Scheme 1).

Compounds **2** and **3** are crystalline solids stable in air both neat and in solutions. Their structure was proved by IR and ¹H, ³¹P, and ¹¹⁹Sn spectroscopy, mass spectrometry, electronic absorption spectroscopy, and elemental analysis. The IR spectra of complexes **2** and **3** exhibit

Scheme 1

M = Sn (2), Ge (3)

characteristic bands in the region of $3600-3650~{\rm cm^{-1}}$ due to the stretching vibrations of the O-H bonds in the phenolic groups and in the region of $520~{\rm cm^{-1}}$ for the stretching vibrations of the C-Pt bonds. Data of electronic absorption spectroscopy show the presence of $\pi-\pi^*$ transitions in the aromatic systems of **2** and **3** in the region of 220 nm and the absence of intramolecular charge transfer bands in the ligand—metal system.

The ^{31}P NMR spectra confirm the *trans*-configuration of the compounds synthesized (Table 1). The values of direct spin-spin coupling constants $^{1}J_{^{195}Pt_^{-31}P}$, which lie in the range of 2880-3120 Hz, correspond to those for the square-planar complexes *trans*-RPt(PPh₃)₂X. The upfield shift of the proton signals of the equivalent phenolic *tert*-butyl groups (by ~1 ppm) for compounds 2 and 3 relative to those in the initial σ -aryl platinum complex 1 (0.98 ppm in MeCN) implies a more pronounced π -acceptor character of the trichlorostannyl and trichlorogermyl ligands compared to that of the Cl

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 687-690, April, 2001.

Table 1. Data of the ³¹P NMR spectra of compounds **1—3** in different solvents

Com- pound	Solvent	δ	$^{1}J_{\mathrm{Pt-P}}$	$J_{\mathrm{Sn-P}}$	ε 12	D _N 12		
		Hz						
1	CDCl ₃	21.0	3196	_	_	_		
2	C_6D_6	18.6	2880	236	2.27	_		
	CDCl ₃	17.4	2882	232	4.81	_		
	MeCOMe	17.4	2903	_	20.56	17		
	MeCN	17.1	3086	_	35.94	14.1		
	C_5H_5N	18.0	3116	_	12.91	33.1		
3	C_6D_6	20.9	2921	_	_	_		
	CDCl ₃	19.6	2927	_	_	_		
	MeCN	19.1	3037	_	_	_		

atom; 10 this was also observed for analogous σ -phenyl platinum complexes 11 .

The Pt-Sn and Pt-Ge bonds in compounds 2 and 3 show a high degree of polarity in solutions. It was found by ³¹P NMR spectroscopy that an increase in the polarity and coordination capacity of the solvent entails an increase in the direct spin-spin coupling constants ${}^{1}J_{195\text{Pt}-31\text{P}}$ (see Table 1). The data in Table 1 show that the ${}^{1}J_{\text{Pt}-\text{P}}$ values are correlated with the dielectric constant of the solvent ε . An exception is pyridine, which is, however, characterized by a rather high donor number $D_{\rm N}$ compared, for example, with those for acetone and acetonintrile. This fact allows one to take into account a substantial contribution of the coordination capacity of the solvent to its overall effect on the character of the Pt-Sn and Pt-Ge bonds in compounds 2 and 3. The spectra of solutions of compound 2 in nonpolar solvents (benzene, chloroform) display signals corresponding to the splitting of the ³¹P signals at the ¹¹⁷Sn and ¹¹⁹Sn nuclei; however, these signals are missing from the spectra in polar and coordinating solvents (viz., acetone, acetonitrile, and pyridine). In addition, the ¹¹⁹Sn NMR spectra of compound 2 in chloroform show spin-spin coupling with the nuclei of the two equivalent ³¹P atoms $(J_{P-Sn} = 471 \text{ Hz})$; in acetonitrile, only a broadened singlet with $\Delta H = 200-250$ Hz is observed.

Based on these results, it can be concluded that in polar solvents, the Pt—Sn and Pt—Ge bonds in complexes 2 and 3 are polarized to such a degree that the compounds exist in solutions as contact ion pairs (Scheme 2) (the solvolytic cleavage of the $M=GeCl_2$ bonds in the $Cl_5M=GeCl_2$ complexes, where M=Cr, Mo, W, is described in Ref. 13).

Solvents with a sufficient coordination capacity (high donor number $D_{\rm N}$) appear to stabilize the organometallic fragment with predominant localization of the positive charge on the Pt atom due to the additional axial coordination.¹⁴

It was shown by ¹H NMR spectroscopy that diamagnetic complexes **2** and **3** are stable in solutions in the 20–80 °C temperature range. A different in kind situa-

Scheme 2

Solv is a polar coordinating solvent

tion is found when compounds 2 and 3 pass from the diamagnetic into the paramagnetic state.

The oxidation of 2,6-di-*tert*-butylphenols is known¹⁵ to start with single-electron oxidation giving rise to the corresponding radical cations. Experiments on the electrochemical oxidation of compounds **2** and **3** using a rotating disk-ring Pt electrode showed that the oxidation in a MeCN—CH₂Cl₂ (1 : 3) solution is irreversible, and the $E_{1/2}$ values of complexes **2** and **3** decrease with respect to that of the starting compound **1** ¹⁶ and are equal to 0.88, 0.92, and 1.14 V, respectively. The shift of the potential to the less anodic region ($\Delta E_{1/2} = 0.26$ (2) and 0.22 V (3)) reflects apparently the decrease in the energy of the electrochemically active MO of the complexes upon the introduction of the SnCl₃ and GeCl₃ groups, possessing electron-acceptor properties.

The oxidation of organometallic phenol derivatives $\mathbf{2}$ and $\mathbf{3}$ on treatment with $(Bu^tO)_2$ with irradiation or on treatment with lead dioxide in benzene, toluene and THF, as in the case of compound $\mathbf{1}$, gives rise to radical products $\mathbf{2a}$ and $\mathbf{3a}$ (Scheme 3).

Scheme 3

2, 3
$$\xrightarrow{PbO_2}$$
 O $\xrightarrow{Pt-MCl_3}$ $\xrightarrow{Pph_3}$ $\xrightarrow{Pph_3}$

Parameters of the ESR spectra of radicals **2a** and **3a** (Fig. 1, Table 2) point to spin density distribution over the whole molecular systems of complexes including both the organic moiety and the metals. The spectra exhibit the HFC of the unpaired electron with the two

Fig. 1. ESR spectra of radical 2a (benzene, 290 K).

Table 2. Parameters of the ESR spectra of radicals **1a-3a** (benzene, 293 K)

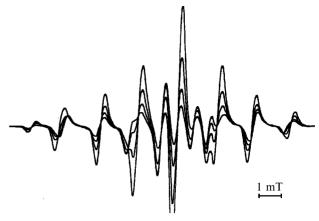
Radical	g-Factor	a_{H}	<i>a</i> 195Pt	<i>a</i> 31 _P	<i>a</i> 117/119 _{Sn}	
		mT				
1a ⁸	2.0079	0.12	9.4	1.6	_	
2a	2.01	0.13	7.75	1.9	1.6	
3a	2.01	0.15	7.33	1.75	_	

equivalent *meta*-protons of the phenoxyl ring (¹H), the ¹⁹⁵Pt nucleus, the ³¹P nuclei, which are equivalent (due to the *trans*-structure), and the ^{117/119}Sn nuclei in the case of radical **2a** (see Fig. 1).

The HFC constants a_{Pt} markedly decrease and the a_{Pt} values for radicals 2a and 3a increase with respect to the corresponding values for 1a. The HFC constants depend not only on the electronic structure of the paramagnetic complex but on its geometric parameters. However, in this case, there are no grounds for suggesting that the geometry of radical species 2a and 3a deviates from the planar-square geometry because the spectral data confirm the equivalence of the P atoms. Therefore, the pronounced decrease in the HFC constants of the unpaired electron with the ¹⁹⁵Pt nucleus ($\Delta a_{Pt} \approx 2 \text{ mT}$) and the presence of HFC with the 117/119Sn nucleus (2a) attests to spin density transfer from the Pt atom to the Sn and Ge atoms by the spin-polarization mechanism, which is due to both the π -acceptor properties of the MCl₃ groups and the ability of the Pt atom to transfer electron density (transmission effect).

These electronic effects influence the kinetic and thermodynamic stability of radicals 2a and 3a. According to ESR data, the stability of these species differs appreciably from that of diamagnetic precursors 2, 3 and radical 1a. The half-life $(\tau_{1/2})$ in solutions amounts to several minutes and decreases with an increase in temperature. Decomposition of radicals 2a and 3a is accompanied by elimination of MCl_2 giving rise to radical 1a (Scheme 4).

Scheme 4


$$\mathbf{2a,3a} \longrightarrow \mathbf{O} \longrightarrow \mathbf{PPh_3}$$

$$PtCl + MCl_2$$

$$PPh_3$$

$$Pph_3$$

The signals of radicals 2a, 3a disappear from the ESR spectra, and a signal for radical 1a appears (Fig. 2). The rate constants (k) for the unimolecular decomposition of 3a at 323, 343, and 353 K are 2.27, 6.24, and $8.4 \cdot 10^3$ s⁻¹, respectively. In the case of radical 2a, the reaction rate is higher, which hampers the kinetic studies due to signal overlap. The enthalpy for the elimination of GeCl₂ from radical 3a is 10.2 kcal mol⁻¹.

Fig. 2. Variation of the ESR spectrum corresponding to radical **3a** decomposition (benzene, 350 K, Scheme 4).

The results obtained provide the conclusion that the transfer of diamagnetic σ -aryl complexes 2 and 3 to the paramagnetic state upon oxidation of the organic ligand has an activating effect on the organometallic group by an intramolecular mechanism and results in a pronounced weakening of the Pt—M bond.

Experimental

IR spectra were recorded on an IKAR FT spectrophotometer in KBr pellets; electronic absorption spectra were measured on a Cari 219 Varian spectrophotometer. The NMR spectra were run on a Bruker AM-300 instrument operating at 300 MHz (1H) and on a Varian VXR-400 instrument operating at 400 MHz (1H), 161.9 MHz (31P), and 149.1 MHz (119Sn). Mass spectra were obtained on a LCQ (Finnigan) mass spectrometer. ESR spectra were recorded on a Varian E 12A and Bruker EMX-6 radiospectrometers. The measurements were carried out after pre-evacuation of tubes with solutions of samples (concentration $1 \cdot 10^{-4}$ mol L⁻¹). The oxidants were taken in a tenfold excess. Electrochemical measurements were carried out using an automated system consisting of a PI 50 potentiostat, a PR-8 programmer, and a Pentium MMX PC. A rotating disk-ring Pt electrode with a ring of diameter 2 mm, whose efficiency was 0.1, was used. The working rotation velocity of the electrode was 298.3 rad $s^{-1};\ Bu_4NClO_4$ was used as the supporting electrolyte.

The solvents $CDCl_3$, C_6D_6 (Merck) were used without further purification; C_6H_6 , C_6H_5Me , Me_2CO , MeCN, and THF were purified by standard procedures. ¹⁷ The $SnCl_2$ samples (Aldrich) were used without further purification, $GeCl_2$ was used as a complex with dioxane. ¹⁸ The kinetic measurements were performed in a temperature-controlled cell in a ESR spectrometer.

trans-(3,5-Di-tert-butyl-4-hydroxyphenyl)-bis(triphenyl-phosphine)platinumtintrichloride (2). Tin dichloride (0.15 mmol) was added under Ar to a solution of compound 1 (0.1 mmol) 8 in 3 mL of CHCl₃. The reaction mixture was stirred for 1 h and filtered and the filtrate was concentrated to dryness. The residue was dissolved in benzene, the insoluble impurities were filtered off, and the reaction product was precipitated by petroleum ether. Recrystallization from benzene gave 2 (yield 58%), m.p. 186 °C. 1 H NMR (CDCl₃), δ: 0.91 (s, 18 H, C(CH₃)₃); 4.39 (s, 1 H, OH); 6.31 (s, 2 H, C₆H₂); 7.30—7.50 (m, 30 H, C₆H₅). UV (MeCN), λ_{max} /nm (log ε): 219 (4.38). IR, ν/cm⁻¹:

3635 (O—H); 2920—3010 (C—H, C(C $\underline{\text{H}}_3$)₃). MS (electrospray), m/z: 924.7. [C₅₀H₅₁OP₂Pt]⁺. Found (%): C, 52.95; H, 5.13. C₅₀H₅₁Cl₃OP₂PtSn. Calculated (%): C, 52.22; H, 4.43.

trans-(3,5-Di-tert-butyl-4-hydroxyphenyl)-bis(triphenylphosphine)platinumgermaniumtrichloride (3) was prepared in a similar way from complex 1 (0.1 mmol) and GeCl₂ · dioxane (0.14 mmol). The yield of compound 3 was 69%, m.p. 192–193 °C. ¹H NMR (CDCl₃), δ: 0.88 (s, 18 H, C(C<u>H</u>₃)₃); 4.23 (s, 1 H, O<u>H</u>); 6.49 (s, 2 H, C_6H_2); 7.20–7.70 (m, 30 H, C_6H_5). UV (MeCN), λ_{max}/nm (log ϵ): 220 (4.41). IR, v/cm^{-1} : 3617 (O—H); 2900—3010 (C—H, $C(CH_3)_3$). MS (electrospray), m/z: 924.7. $[C_{50}H_{51}OP_{2}Pt]^{+}$. Found (%): C, 54.52; H, 4.89. C₅₀H₅₁Cl₃GeOP₂Pt. Calculated (%): C, 54.40; H, 4.62.

This work was supported by the Russian Foundation for Basic Research (Project No. 99-03-33052), the European Union (INTAS grant 97-30344), and the State Program "Fundamental Problems of Modern Chemistry" (Project No. 9.3.03).

References

- 1. D. Astrus, Electron Transfer and Related Processes in Transition-Metal Chemistry, VCH, New York, 1995.
- 2. E. R. Milaeva and G. Speier, Asian J. Chem. Rev., 1990, 1, 159.
- 3. E. R. Milaeva, Z. Szeverenyi, and L. I. Simandi, Inorg. Chim. Acta, 1990, 167, 139.
- 4. E. R. Milaeva and G. Speier, Inorg. Chim. Acta, 1992, **192**, 117.
- 5. V. A. Bataev, V. M. Mamaev, and E. R. Milaeva, Zh. Organ. Khim., 1994, 30, 748 [Russ. J. Org. Chem., 1994, 30 (Engl. Transl.)].

- 6. E. R. Milaeva, A. V. Androsova, O. V. Polyakova, A. I. Prokof'ev, and V. S. Petrosyan, Izv. Akad. Nauk, Ser. Khim., 1996, 1822 [Russ. Chem. Bull., 1996, 45, 1734 (Engl. Transl.)].
- 7. G. K. Anderson, H. C. Clark, and J. A. Davies, Organometallics, 1982, 1, 64.
- 8. E. R. Milaeva, A. Z. Rubezhov, A. I. Prokof'ev, and O. Yu. Okhlobystin, J. Organomet. Chem., 1980, 188, C43
- 9. P. S. Pregosin, Annu. Rep. NMR Spectrosc., 1986, 17, 285.
- 10. K. M. MacKay and B. K. Nicholson, in Comprehensive Organometallic Chemistry, Ed. G. Wilkinson, Pergamon, Oxford, 1982, 6, 1043.
- 11. G. W. Parshall, J. Am. Chem. Soc., 1966, 88, 704.
- 12. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed., VCH, Weinheim, 1991.
- 13. M. P. Egorov, A. A. Basova, A. M. Gal'minas, O. M. Nefedov, A. A. Moiseeva, R. D. Rakhimov, and K. P. Butin, J. Organomet. Chem., 1999, 574, 279.
- 14. F. R. Hartley, in Comprehensive Organometallic Chemistry, Ed. G. Wilkinson, Pergamon, Oxford, 1982, 6, 540.
- 15. V. D. Pokhodenko, V. S. Degtyarev, V. G. Koshechko, and V. S. Kuts, Problemy khimii svobodnykh radikalov [Problems of Free-Radical Chemistry], Naukova Dumka, Kiev, 1984, 111 (in Russian).
- 16. E. R. Milaeva, I. V. Karsanov, A. Z. Rubezhov, N. T. Berberova, and O. Yu. Okhlobystin, Abstrs. IV FECHEM Conf. on Organometallic Chemistry, A33, Prague, 1982.
- 17. A. J. Gordon and R. A. Ford, The Chemist's Companion, J. Wiley and Sons, New York, 1972.
- 18. S. P. Kolesnikov, V. I. Shiryaev, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 1966, 584 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, 15 (Engl. Transl.)].

Received November 29, 2000